To: State of California, Water Resources Control Board Subject: Petition for Review by State Board Title 23, Waters

Date: August 26,2008

From: Petitioner, Save the American River Association, Inc.

P.O. Box 277638, Sacramento, CA 95827-7638

Regional Board Action: Waste Discharge Order for Clean Closure

City of Folsom Corporation Yard Landfill, July 31,2008

Grounds for Appeal

I. Appeal of WDR's Water Monitoring Program, sections relating to Background Monitoring, Detection Monitoring, and Evaluation Monitoring. Title 27 (20420), Standards require the installation of monitoring systems that comply with certain minimum standards.

The WDR's as adopted (p. 5, Table D3a, Monitoring locations) are negated by the footnotes to the table. These have the effect of causing a single well to be used for detection, monitoring, and evaluation. Water would be drawn from a single well located below the entire clean closure area and the illegal dumping areas. Water used as the "standard" will be the same water collected as the detection mechanism. The Discharger claims there is no alternative due to space considerations, but gives no evidence for the assertion.

The Discharger was ordered to produce geologic and hydrologic evidence (Letter 18 April 2008 from Guy Graening of Brown and Caldwell), but the reply is non-responsive to the request.

Legal Authorities: Factual prima facie evidence is stated in the RWQCB letter of 18 April, 2008, in which staff asked for additional scientific data. This proof was not provided by the Discharger. Petitioner offers additional facts relevant to this portion of the appeal, including but not limited to, historic and RWQCB files refuting the position of the Discharger.

Staff cite Section 20415b 1 A as the citation which would apply if indeed Discharger had met the Burden of Proof allowing exemption from this section. In this case, a single boring serves multiple functions: detection, monitoring, and evaluation. Curiously, the water below the dump sites, closest to the river, will be the sample taken and serve as well as the comparison standard.

Footnote 2 in the WDR's indicates that intra-well monitoring will be performed by these wells—referring to wells numbered 3 and 7, which are within the historic dumping area and the first sewage treatment plant the Discharger employed prior to 1961. As above, and once again, the Discharger is being given a pass by being allowed to use the detection sample as the monitoring and evaluation sample. Wells 3 and 7 are in physical proximity, in the middle of the Discharger's current hazardous materials operation area. It is also an area where diesel fuel and vehicle fluids

accumulate. This should not be used for either a background or upgradient evaluation sample of water.

This latter issue is addressed in the letter from Board staff (April 18, 2008) seeking additional data and evidence from the Discharger. No evidence was ever provided to substantiate the appropriate selection of detection, monitoring and evaluation sources.

The result is zero upgradient and background water quality samples. This is contrary to the intent and requirement of a water monitoring program.

Despite the complexity of these issues, SARA was allowed only 10 minutes to address them. The Discharger was allowed to make continuous changes and submissions after the arbitrary cut-off date of June 23, yet we as public representatives had no opportunity to respond to these late submissions. The public was never notified of these changes, requested by the Discharger, and allowed by Regional Board management who oversaw staff efforts to obtain compliance.

Note that these issues were revealed after the hearing, and after the Board refused to grant a continuance, and in spite of comments and testimony from the US Bureau of Reclamation and State Parks citing significant unaddressed concerns.

II. Failure of the Discharger to Provide Adequate Financial Assurances

Regional Board refused to grant a continuance, sought by several members of the public, on the grounds that the city has not demonstrated the required financial assurances. Petitioner is harmed because the failure to provide a full, complete, safe, and timely excavation operation will result in the release of known toxic substances and perhaps additional currently unknown Constituents of Concern.

Action requested: Rescission of the WDR's pending proper compliance by Discharger with all Financial Assurance Requirements. Title 27, Subchapters 2 and 3.

At the hearing, Board staff member Marshall stated that the Discharger submitted a letter on July 29, 2008, describing a resolution from the City to use Solid Waste Enterprise funds to provide a total of \$2.5 million during calendar year 2008. He said the city's submission was not acceptable to satisfy the FA requirements.

We learned in conversations with staff that the city had missed three deadlines to provide FA from January 1, 2008, through the hearing date. Once more, the city was given a pass.

The City plans to make the 5-7 acres of the clean-up site available for erection of a four story hotel. Because the City cannot tie the burden of future construction to the Solid Waste fund except in the 2 areas which were permitted/closed dump sites, they admit that the funds cannot be used to deal with the other illegal dumping areas and encroachments onto federal lands on the shores of the American River. It remains to be seen if the solid waste funds can legally be used to create development land.

Discharger submitted information to the Board describing the dire nature of the City's finances. Nonetheless, Board members chose to define this information as irrelevant. No time was allotted to examine the evidence, or to cross examine the Discharger's witnesses on this critical matter.

It should be pointed out that the new WDR's require another financial obligation as of October 31—assurances for the rainy season if the job has not been completed. Is it plausible to expect the City, in the light of its record, to meet this additional obligation in a timely fashion?

We are concerned that any additional problems encountered in the clean-up site could potentially create huge and unexpected costs, to say nothing of an environmental disaster.

III. Characterization of the Contamination

Enacting new WDR's was inappropriate and premature because the Discharger did not adequately characterize the extent and nature of the contamination caused by them during the mid-late Twentieth Century, and up to the present date.

Official letters from the USBR and California State Parks are a part of the public record on this issue.

The City has allowed its worst pollutants to be deposited onto the federal lands abutting its heavy operations—vehicles, diesel fuel, hazardous materials storage and handling, painting, varnishing, industrial cleaning, truck washing, VOC disposal, raw sewage dumping from the Corp yard, oil storage, electronic waste handling/storage. Sixteen different toxic agents are cited in the Health and Safety report, which is in the public record.

After a near-disastrous fire at the Folsom Corporation Yard on June 21, 2007, soil samples taken by Board staff revealed concentrations of total lead. In the record are numerous graphic photographs of the exposed debris dumped along the bike corridor which is entirely on federal lands.

USBR personnel who asked for clean-up of the additional areas on federal lands were ignored by the Board. Documentary evidence indicates that the Discharger intends to use their partial clean closure as evidence of cleaning up the entire Corporation Yard. In fact, they have funds only for the 4 acres of permitted/closed sites, and the remaining 15 acres will be minimized as a threat to the ground and river waters. Solid Waste Assessment Testing done by Brown and Caldwell for the discharger in December, 2000, offers a complete baseline study for the Corporation yard.

The current study does not address the 1000 cubic yards (estimated) of diesel contaminated soil beneath the City's historic storage areas. It does not address the swale channeling city run off directly onto federal land and waters. It cuts off all the photos, graphs, and maps so that the larger encroachment is not visible. The encroachment developed after the passage of the 1970's environmental protection

laws, including the Clean Water Act. It has increased since 1981, and remains a significant toxic blot on the landscape near the river.

Additional Requirements:

A. How Petitioner is Aggrieved by the Regional Board Action

The Save the American River Association ("SARA") was founded in 1961, and has been recognized since as the guardian and public spokesman for maintaining the health and quality of the Lower American River and its Parkway, a recreational corridor and wildlife habitat serving a large urban population. The river that provides these beneficial resources also serves as the major water supply for a major urban area.

SARA's mission demands that the precautionary principle guide our actions. In other words, we insist that government agencies with stewardship duties toward our public waters perform these duties with the following principle foremost:

"Above all, do no harm." Our concern arising from the regional board action in this matter is that potential for serious harm to the waters of the federal government and the State of California is inherent in the Board's approval of Folsom's request for a clean closure that is seriously flawed in the manner described in this petition.

B. Action Requested by the State Board

Petitioner is asking the State Board to nullify the Regional Board's WDO's of July 31. We ask instead, as we requested at the hearing, for a Clean-up and Abatement Order applying to the entire 19 acre Corporation Yard site, including those parts of the site that encroach on federal lands administered by California State Parks.

C. Notification of Interested Parties

Copies of the petition will be sent to the Regional Board and to the Discharger no later than August 30. We have asked the Regional Board for a list of other interested parties, as required. A copy of the hearing transcript has been requested, and will be provided if available.

Prepared and Submitted by Alan D. Wade, for the SARA Board of Directors. Home address: 2916 25th St., Sacramento, CA 95818

Save the American River Association, Inc. P.O. Box 277638, Sacramento, CA 95827-7638

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD CENTRAL VALLEY REGION

ORDER NO. R5-2008-0106
WASTE DISCHARGE REQUIREMENTS
FOR CLEAN CLOSURE OF
FOLSOM CORPORATION YARD LANDFILL
CITY OF FOLSOM
CLASS III LANDFILL
SACRAMENTO COUNTY

The California Regional Water Quality Control Board, Central Valley Region, (hereafter Regional Water Board) finds that:

- 1. The City of Folsom (hereafter referred to as "Discharger") owns and operates the City of Folsom Corporation Yard Landfill, a 3.2-acre closed landfill on Leidesdorff Street near Lake Natoma in the City of Folsom, as shown in Attachment "A", which is incorporated herein and made part of this Order. The landfill is within the City's 18-acre corporation yard site in Section 35, T10N, R7E, MDB&M. The assessor's parcel numbers for the site are 070-0031-002, 070-0032-001, 070-0032-005, 070-0033-001, 070-0033-002, 070-0033-003, 070-0034-001, 070-0034-002, 070-0041-001, and 070-0041-003.
- 2. The landfill operated from 1974 until 1987, accepting street cleaning and other wastes from City owned and/or operated facilities. While the facility was not open to the public, some unauthorized public dumping occurred immediately south of the main landfill in a 1.1-acre area hereinafter referred to as the "Uncontrolled Fill Area" (UFA). The landfill stopped accepting wastes in 1987 and in 1996 was closed (i.e. graded and clay capped) in accordance with Title 23 California Code of Regulations, Division 3, Chapter 15 (now Title 27 California Code of Regulations, Division 2 (Title 27) regulations. Since 1996, the Discharger has been performing post-closure monitoring and maintenance of the landfill under previous closure Waste Discharge Requirements (WDRs) Order No. 95-246.
- 3. Historical monitoring data for the site shows impacts to shallow groundwater from the landfill consisting of elevated inorganic salts and dissolved metals (see Finding 35). On 8 May 2008, the Discharger submitted a revised Report of Waste Discharge (RWD) proposing to clean close the landfill as a corrective action measure to address these impacts. On 19 June 2008, the Discharger submitted the construction bid package for the project, including plans and specifications, as an amendment to the RWD. These revised WDRs include updated findings that describe the Discharger's clean closure plan and prescribe requirements for clean closure of the landfill as a corrective action measure.
- 4. The landfill facilities include the landfill, uncontrolled fill area, access road/parking area, groundwater monitoring wells, gas monitoring wells, drainage facilities, and perimeter fence, as shown in Attachment "B", which is incorporated herein and made part of this Order.

5. The facility is not subject to federal municipal solid waste landfill regulations (Title 40, Code of Federal Regulations, Part 258, or "Subtitle D") because it stopped accepting wastes before the effective date of those regulations, 9 October 1991.

WASTE AND UNIT CLASSIFICATION

- 6. Wastes discharged to the landfill included "inert" and "nonhazardous" solid wastes as defined under 27 CCR Sections 20230 and 20220, respectively. The landfill was not authorized to accept hazardous or liquid wastes.
- 7. Historical records indicate that the main landfill accepted about 2.4 tons per day (10 cubic yards per day) of wastes, including the following:
 - Construction and demolition (C&D) debris (e.g., soil, asphalt, concrete, wood, and scrap metal);
 - Green wastes
 - Street cleaning wastes (e.g., glass, paper and plastic);
 - Residual wastes from garbage trucks (i.e., household waste)

After being discharged to the landfill, the wastes were typically compacted and covered with other landfill wastes, such as soil or asphalt.

- 8. Geotechnical investigations conducted by the discharger in 2000, 2006, and 2008 confirmed historical information regarding the types of wastes discharged to the landfill and indicated that the main landfill contains primarily of C&D and green wastes. Primarily household wastes were found in the UFA. About 42,000 cubic yards of waste are estimated to be in place in the main landfill and about 11,000 cubic yards in the UFA.
- 9. Under 27 CCR Section 20080(d), the main landfill is an existing Class III waste management unit (WMU) and the UFA is an existing unclassified WMU. The landfill is unlined and does not have a leachate collection and recovery system.

SITE DESCRIPTION

- 10. The site is within the American River corridor along the eastern side of Lake Natoma, about 3.3 miles downstream of the Folsom Dam and 2.6 miles upstream of the Nimbus Dam. The site is near the site of historic Negro Bar, a former gold rush era boomtown, and much of the area is built on dredge tailings from historical mining activities.
- 11. Within the river corridor, the topography includes beach, riverbank and terrace areas. Outside of the river corridor, the topography generally consists of rolling foothill terrain interrupted in areas by uplifted, exposed bedrock. Site elevations range from about 166 feet above mean sea level (MSL) at the NE end of the landfill to about 145 feet MSL along the SW site perimeter along the riverbank.

- 12. Land uses proximate to the site include residential development to the south and east; state parkland to the SW and NW (on the other side of Lake Natoma); a cemetery (adjacent to the private residences to the south); commercial development (i.e. to east on edge of downtown); and industrial development (i.e. City corporation yard to NE).
- 13. Based on a 2008 Department of Water Resources (DWR) well survey, there are no known domestic, municipal, industrial or agricultural supply wells within a one-mile radius of the site. Two historical supply wells were identified about 2/3 of a mile southeast of the site, but could not be located and are believed to have been abandoned. Residences and businesses in the landfill vicinity are connected to municipal water supplied by the City of Folsom. All City drinking water comes from the Folsom reservoir.
- 14. The site is not within the 100-year floodplain.
- 15. Surface drainage is to Lake Natoma, a part of the American River, tributary to the Sacramento River. The water elevation in lake Natoma is typically about 126 feet MSL.
- 16. The 100-year, 24-hour precipitation event is 4.0 inches, as determined from Rainfall Depth Duration Frequency data provided by the State Department of Water Resources for the Represa Station about three miles northeast of the facility. The average annual rainfall at the site is about 23 inches. Under the MRP of this Order, a storm event is considered "significant" (triggering facility monitoring) if it produces 1.5 inches or more of precipitation within a 24-hour period, as measured at the Represa Station.
- 17. MRP No. R5-2008-0106, Section F.3 requires that the Discharger inspect remaining portions of the landfill and associated facilities (i.e., those not yet clean closed) within seven days following a "significant storm event", and implement necessary repairs.
- 18. The Water Quality Control Plan for the Sacramento River and San Joaquin River Basins, Fourth Edition (hereafter Basin Plan) designates beneficial uses, establishes water quality objectives, contains implementation plans and policies for protecting waters of the basin, and incorporates by reference, plans and policies adopted by the State Water Resources Control Board.
- 19. The beneficial uses of the American River from Folsom Dam to the Sacramento River are municipal and domestic supply; agricultural supply; industrial service supply; hydropower generation; water contact recreation, non-contact water recreation; warm freshwater habitat; cold freshwater habitat; migration of aquatic organisms; spawning, reproduction and/or early development; and wildlife habitat.

20. The beneficial uses of the ground water are municipal and domestic supply, agricultural supply, industrial service supply, and industrial process supply as designated in The Water Quality Control Plan for the Sacramento River and San Joaquin River Basins, Fourth Edition.

GEOLOGY

- 21. The regional geology represents a transition between Cretaceous to Recent Age alluvial deposits of the American River flood plain and Jurassic Age metamorphic rocks of the Sierra Nevada foothills. As such, the regional geology is characterized by dissected alluvial uplands and exposed, uplifted bedrock. Alluvial deposits thin out and disappear within about a mile east of the site.
- 22. There are no known Holocene faults within 1000 feet of the facility. The closest active fault is in the Bear Mountains fault zone, the westernmost of the four major faults in the Sierra foothills (Melones, Sonora and Calaveras-Shoo being the other three), about 5 miles east of the site. Recorded magnitudes of seismic events along this fault zone range up to 5.8 on the Richter scale. The peak bedrock acceleration is estimated to be 0.2g to 0.3g based on a USGS probabilistic map.
- 23. Dredge tailings from historical mining activities underlie the site, as shown by monitoring well boring logs. The tailings layer is about 10 feet thick under the landfill and about 15 to 30 feet in other areas of the site. The material represents a mixture of disturbed river alluvium, Quaternary Laguna and, to a lesser degree, Tertiary Mehrten deposits, including unconsolidated cobble, gravel, sand, clays and silt. The tailings layer terminates along the eastern side of the landfill at the interface with undisturbed Laguna deposits, which form a hill on the eastern side of the site. The Laguna deposits typically consist of discontinuous, poorly bedded alluvium (i.e., sand, silt, clay and gravel) where not disturbed by historical dredging activities. Maximum depths of the Laguna at the site range from about 40 to 90 feet bgs.
- 24. The Mehrten formation directly underlies the tailings layer in areas where the Laguna was dredged, including the landfill area. The Mehrten consists of clay, mudflow, and other low permeability deposits. Boring logs for onsite wells indicate that the Mehrten is slightly mounded (138 feet MSL) on the northeastern side of the landfill and slopes radially toward the northwest, west and southwest landfill perimeters (125 feet MSL). In the landfill area, depths to the Mehrten range from about 12 to 30 feet bgs, while estimated depths to underlying bedrock range from about 150 to 170 feet bgs.

GROUNDWATER HYDROLOGY

Upper Water Bearing Zone

25. Based on boring logs for monitoring wells at the site, the upper water-bearing zone (UWBZ) is in the dredge tailings layer, perched on the underlying Mehrten formation. The site conceptual model developed from boring logs at the site indicates that the

UWBZ terminates with the dredge tailings along the eastern edge of the landfill at the interface with the Laguna formation, which is unsaturated east of the landfill.

26. Due to the limited easterly extent of the UWBZ, the Discharger has not been able to sufficiently space wells at the site to reliably triangulate the groundwater flow direction using groundwater elevation data (see Finding 34). The site conceptual model is therefore considered to be a more reliable indicator of the direction of shallow groundwater flow at the site than is groundwater elevation data. The model indicates that shallow groundwater is fed by surface infiltration and possible infiltration from the Laguna, and follows the topography of the underlying Mehrten toward the west, southwest and northwest (see Finding 23). The depth to shallow groundwater in the landfill area generally ranges from about 20 to 26 feet bgs.

Lower Water Bearing Zone

27. The lower water-bearing zone (LWBZ) is in the upper Mehrten formation directly underlying the dredge tailings/Laguna layers. Two LWBZ monitoring wells (FCYs-3 and 7) have been installed at the site, both along the northeast perimeter of the landfill. Pieziometric groundwater elevations measured in these wells are typically up to 10 feet higher (e.g., 139 feet MSL) than UWBZ wells (e.g., 129 feet MSL), indicating that, at least on the eastern side of the site, the LWBZ may have only limited hydraulic communication with the UWBZ. No LWBZ monitoring wells have been installed on the western side of the site to measure the direction of groundwater flow, but based on the site conceptual model, it appears to be toward the west.

LANDFILL DESIGN

- 28. The main landfill was constructed in the City's former wastewater treatment plant ponds, which were decommissioned in 1973. There were three ponds, including a circular aeration basin in the northern part of the landfill and, immediately to the south, two large settling lagoons. The lagoons were separated by a central access berm that also formed their interior sides. The aeration basin was 100 feet in diameter and 14 feet deep, representing about 1/4 of the landfill area and 2/5 of the landfill volume. Each settling lagoon was about 90 feet wide, 625 feet long, and up to seven feet deep at the deepest (north) end, representing about 3/4 of the landfill area and 3/5 of the landfill volume. The interior side slopes of the landfill are the same as those of the sides of the former ponds, 3H:1V.
- 29. Each pond was lined with one foot of clay underlain by plastic, and the bottoms of the settling lagoons sloped from south to north, where each lagoon had a standpipe to regulate liquid level. Reports on file indicate that the clay liners of the ponds were breached in several places during landfill construction, and field borings have not been able to confirm the presence of the pond liner at all locations. Berms separating the ponds may have been removed during landfill construction. As such the landfill is considered unlined and does not have a leachate collection and

recovery system. All three ponds were filled with waste as a single, contiguous landfill unit.

LANDFILL CLOSURE

- 30. Section 20950(a)(2)(A) of Title 27 prescribes the performance standard applicable to classified units closed as a landfill as follows:
 - "...the goal of closure, including but not limited to the installation of a final cover, is to minimize the infiltration of water into the waste, thereby minimizing the production of leachate and gas. For such Units, after closure, the final cover constitutes the Unit's principal waste containment feature;"
- 31. In 1996, the Discharger closed the landfill in accordance with an approved Final Closure Plan submitted under previous WDRs (9 December 1993 Final Amendment to Final Closure Plan and to Letter of Modification). A Title 27 prescriptive cover was installed as follows:
 - a. Foundation Layer 2 feet (90% compaction of upper foot)
 - b. Low Hydraulic Conductivity (LHC) Layer 1 foot of compacted clay (k ≤ 1 x 10⁻⁶ cm/sec)
 - c. Erosion Resistant Layer
 - Upper deck (1.2 acres): 8 inches of aggregate base covered with 2 inches of asphalt concrete
 - Lower deck and slopes (2.6 acres): 1 foot of clean vegetative cover soil seeded with native grass mix

Interim cover soil was used for the foundation layer and imported clay for the low permeability layer. Asphalt was applied in lieu of vegetative cover soil over the landfill deck area to create an employee parking area for the corporation yard. The closure work was documented in the October 1996 report *Final Report On Construction Quality Assurance, City of Folsom Corporation Yard Landfill Closure*, prepared by Golder Construction Services, Inc.

- 32. Precipitation and drainage controls installed as part of closure included grading the landfill cover (i.e., upper and lower decks) at about a 2 percent slope for sheet flow drainage to the western site perimeter. An unlined diversionary swale was also constructed along the eastern landfill perimeter plumbed to an outfall in the southwest corner of the site. All such controls, including ditches, drop inlets and culverts, were designed to accommodate a 24-hour, 100-year storm event.
- 33. Six landfill gas (LFG) monitoring wells were installed as part of closure in accordance with solid waste regulations, including five along the landfill perimeter (Gas-1, 2, 3, 4 and 6) and one (Gas-5) within the landfill footprint along the southern edge of the upper deck. Gas monitoring results since 1996 have indicated methane concentrations less than 1 percent in most wells. The highest methane concentrations (1.3 percent average, 6.1 percent maximum) at the site have been detected in well Gas-2 along the SE perimeter of the landfill.

GROUNDWATER MONITORING

- 34. The groundwater monitoring system for the landfill includes six upper zone wells (FCYs-2, 4, 5, 6, 8 and 9) and two lower zone wells (FCYs-3 and 7). An additional shallow well (FCY-1) was typically dry and was abandoned in 2002. Because perched zone flow beneath the landfill is radial, all of the shallow zone wells are downgradient (i.e., to the west, southwest or northwest). Further, due to the limited easterly extent of the shallow zone, the Discharger was not able to establish an upper zone well upgradient of the landfill for background monitoring purposes. The Discharger demonstrated the sufficiency of downgradient well FCY-9 for background monitoring per Section 20415(b)(2), however, and developed concentration limits using historical monitoring data from this well.
- 35. Historical groundwater monitoring data for the site shows spatial variability and elevated concentrations of certain inorganic constituents indicative of impacts from the landfill, as follows:

Constituent	Concentration ^{1,2}				
General Minerals	FCY-9 South	Upper Zon FCY-2 West	e FCY-8 NW	Lower Zone FCY-3 NE	
Specific Conductance (µmhos/cm)	262	705	912	996	
Total Dissolved Solids	197	457	634	614	
Bicarbonate Alkalinity	84	93	327	238	
Nitrate	21	16	11	2	
Sulfate	27	192	179	255	
Dissolved Metals (μg/L)					
Arsenic	2 .	2	20	5	
Iron	53	2,240	14,000	109	
		4	•		

^{1.} Concentrations in mg/, except where noted.

^{2.} Historical average concentrations from well installation through December 2007.

^{36.} A limited number of volatile organic compounds (VOCs) have also been intermittently detected in monitoring wells at the site, including methyl tert-butyl ether (MTBE, up to 20 μg/L) and, less frequently, low to trace concentrations of ethylbenzene, toluene, xylenes and trichlorobenzene. Semiannual monitoring data for the past 10 years generally indicates declining concentrations (or less frequent detections) of these constituents, with MTBE reduced to non-detect levels in most wells.

- 37. Groundwater impacts at the site may be attributable to one or more of the following factors:
 - a. Leachate infiltration landfill unlined and pond bottom perforated
 - b. Reducing effects of landfill on groundwater geochemistry elevated natural iron and arsenic; depressed nitrate
 - c. Landfill gas effects elevated bicarbonate
 - d. Historical sources former wastewater treatment plant, dredge tailings, other sources
 - e. Combined effects of a, b, c, and/or d.
- 38. Increasing concentrations of inorganic constituents in the groundwater from south to the north at the landfill (i.e., from FCY-9 to FCYs-3 and 8), except for nitrate, may be attributable to one or more of the following factors:
 - a. Waste column thicker in northern part of landfill
 - b. Less groundwater separation in northern part of landfill
 - c. More leachate infiltration in northern part of landfill
 - d. LFG under cap in northern part of landfill
 - e. Reducing zone increases to north
 - f. Natural spatial variability.

Decreasing nitrate concentrations from south to north are consistent with Factor (e) above.

- 39. Time series plots of the monitoring data for inorganic constituents do not show any clear rising or falling trends in concentrations since landfill closure in 1996, except for slightly increasing general minerals in offsite well FCY-4 and slightly decreasing general minerals in wells FCY-5 and 6. Concentrations detected in the most impacted well, FCY-8, have remained relatively constant since the well was installed in 2002.
- 40. Concentrations of landfill COCs detected in groundwater at the site exceed groundwater quality objectives as follows:

Constituent	WQ Objective	Concentration ¹ (mg/L, except where noted)		
ĭ.,		WQ Limit	Upper Zone	Lower Zone
	•		FCY-8	FCY-3
	Chemical	450 ²	•	
TDS	Constituents	500 ³	610	610
	Taste & Odor	500 ³	•	
Sulfate	Chemical Constituents	250 ³	No exceedance	255

Constituent	WQ Objective	Concentration ¹ (mg/L, except where noted)			
	•	WQ Limit	Upper Zone	Lower Zone	
			FCY-8	FCY-3	
Specific	Chemical	700 ^{2.}			
Conductance	Constituents	900 ³	930	910	
(μmhos/cm)	Taste & Odor	900 ³			
Dissolved Met	als (μg/L)		•		
Arsenic	Toxicity	0.004^{4}			
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Chemical Constituents	10 ⁵	21	4	
Iron	Chemical	300 ³			
	Constituents	5,000 ²	18,000	No exceedances	
	Taste & Odor	300^{3}			

^{1.} Based on December 2007 monitoring results.

CORRECTIVE ACTION

- 41. Section 20430 of Title 27 requires that the Discharger establish and implement a corrective action program (CAP) in response to confirmation of a release from the unit. The CAP goals are to remediate the release and achieve compliance with the Water Quality Protection Standards (WQPS). The Discharger has proposed landfill clean closure under Title 27 as a further corrective action measure to address groundwater impacts at the site.
- 42. Section 20950(a)(2)(B) prescribes the performance standards for clean closure as follows:
 - "... for Units that are clean-closed, the goal of closure is to physically remove all waste and contaminated materials from the Unit and from its underlying and surrounding environs, such that the waste in the Unit no longer poses a threat to water quality. Successful completion of clean-closure eliminates the need for any post-closure maintenance period and removes the Unit from being subject to the SWRCB-promulgated requirements of this subdivision . . ."
- 43. Section 21090(f) specifies that a discharger proposing clean closure submit a Clean Closure Plan (CCP), as follows
 - "... [A] discharger proposing to clean-close a landfill shall submit a clean-closure plan meeting the requirements of this subsection. [Note: see also CIWMB's additional landfill clean-closure requirements under §21810.] ... The purpose

^{2.} Agricultural Goal

^{3.} California Secondary Maximum Contaminant Level (MCL)

^{4.} California Public Health Goal

^{5.} USEPA Primary MCL

of a clean-closure plan is to propose a series of actions, including an accurate estimate of the cost of each such action, that will meet the requirements of this paragraph. . . .[T]he discharger shall have successfully clean-closed a landfill only if

- (1) all waste materials, contaminated components of the containment system, and affected geologic materials — including soils and rock beneath and surrounding the Unit, and ground water polluted by a release from the Unit — are either removed and discharged to an appropriate Unit or treated to the extent that the RWQCB finds they no longer pose a threat to water quality;
- (2) and all remaining containment features are inspected for contamination and, if contaminated, discharged in accordance with ¶(f)(1)."
- 44. The Discharger's CCP includes the following steps:
 - a. Site preparation (e.g., equipment, roads, staging areas);
 - b. Abandonment of wells (i.e., all gas wells and MW-9);
 - c. Phased excavation;
 - d. Waste stockpiling and characterization;
 - e. Offsite disposal/recycling;
 - f. Confirmation soil sampling;
 - g. Backfilling and grading;
 - h. Site reclamation
 - i. Postclosure corrective action/groundwater monitoring.
- 45. Site preparation will include establishing project support, staging, and operations stockpile areas (see Attachment B). These areas will be located on a paved parking lot immediately north of the landfill, and, during Phase 1 of the project (see Finding 48), on the asphalt-cover over the northern portion of the landfill. After excavation and backfilling of the Phase 1 area, all project support operations will be moved to the southern part of the site so as to allow for excavation to proceed northward to the Phase 2 and 3 areas.
- 46. An existing paved road through the corporation yard to Leidesdorff Street will be used for site ingress and egress, while temporary haul roads will be established onsite for excavation, backfilling, and other project construction activities. Haul routes will change based on construction needs, but will generally be in areas that have not yet been remediated. Heavy equipment used in project construction activities will include excavators, backhoes, skid steer loaders, bulldozers, graders and rollers.
- 47. All monitoring wells within the excavation area, including all six gas wells and groundwater monitoring well FCY-9 will be abandoned prior to excavation activities (b). Since well FCY-9 is needed as a background monitoring well, MRP No.

R5-2008-0106 requires that this well be replaced after completion of excavation and backfilling of the UFA area.

Excavation Plan

48. The landfill, including UFA, will be excavated in three phases, beginning at the south end of the site and proceeding northward. At any given location, the landfill will be excavated to predetermined depths based on the estimated top of the dredge tailings layer. The landfill cover components will be removed first and then the waste column, including underlying pond liner if present and distinguishable from the dredge tailings at that location. Excavation may therefore exceed target depths, if necessary. The excavation plan is summarized below:

<u>Phase</u>	Location	Area (sq ft)	Waste <u>Column (ft)</u>	Waste <u>Volume (cy)</u>	Components to be Excavated
. 1	UFA	60,000	6	13,000	Waste column
2	Middle and lower decks	66,000	10	24,000	Clay cover, waste column, former pond liner
3	Upper deck	65,000	15	36,000	Asphalt, clay cover, waste column, former pond liner

49. Except for small amounts of perched water, the discharger is not expecting to encounter groundwater during the excavation and will implement measures to prevent run-on into the excavation pit. Discharge Specification B.4 requires that any liquid encountered in the excavation area, including perched groundwater, leachate, and/or storm water, be pumped and appropriately disposed of after testing.

Confirmation Sampling

- 50. Soil cleanup goals were developed for the project using the Designated Level Methodology assuming total nitrate and total sulfate as surrogates for landfill constituents of concern. Both constituents were assumed to be 100 percent soluble and to attenuate by 10:1 in the vadose zone. Soluble designated levels were calculated for each constituent using the lesser of the groundwater concentration limit and the maximum contaminant level (MCL) as the water quality goal. For total nitrate, the soil cleanup goal was determined to be 450 mg/kg, and for total sulfate it was determined to be 570 mg/kg. These soil cleanup goals are incorporated into Discharge Prohibition A.6.
- 51. Soil cleanup criteria were also developed for total metals based on health risk considerations. This work included sampling and testing of background soil at the site for California Assessment Manual (CAM) 17 metals, including all landfill COC metals, except for aluminum, cyanide, iron, manganese, sulfide, and tin, and performing statistical analysis on the results. Background concentrations for each metal, except antimony, which was not detected in any of the samples, were calculated based on the 95 percent upper prediction limit. The soil cleanup criteria

for each CAM 17 metal was then set at the higher of the California Human Health Risk Screening Level, or background concentration.

- 52. Confirmation sampling will be conducted in the bottom of the excavation area in accordance with the Discharger Confirmation Sampling and Analysis Plan (CSAP) in the RWD. The plan defines a sampling grid over the excavation area, including main fill and UFA, consisting of 336 nodes, 25 percent of which (84) will be randomly selected for sampling at the discharger's direction. Sampling will be conducted for the same "target" parameters for which cleanup goals were developed, including soluble minerals and total metals.
- 53. The plan includes a protocol for delineating the lateral extent of any impacted areas in the event any cleanup goals are exceeded at any given node. Under the protocol, consecutive step out sampling would be required at each untested node immediately surrounding a failing node, but would be limited to those parameters that exceeded cleanup goals at the failing node. Once defined, the area exceeding cleanup goals would be remediated (i.e., excavated) and confirmation sampling conducted at the previously failing nodes.
- 54. After completion of confirmation sampling and any necessary additional excavation, the site would be regraded for drainage and revegetated.

Stockpile Operations

- 55. Wastes excavated during each phase will be segregated and stockpiled based on visual inspection and/or organic vapor meter (PID) readings. Separate stockpiles will be created as follows:
 - a. Recyclables (e.g., concrete, asphalt, scrap metal, cobble, tires; appliances, vehicles)
 - b. Hazardous or potentially hazardous wastes
 - c. Designated waste
 - d. Refuse/household waste
 - e. Soil containing refuse or debris
 - f. Potentially impacted soil (i.e., soil from the fill area that does not contain debris or otherwise appear to be impacted).
- 56. Most of the landfill cover material (i.e., about 18,000 cubic yards), including asphalt, aggregate, vegetative cover soil, clay and upper 18 inches of foundation soil, is expected to be recyclable or suitable for onsite reuse (e.g., as road base or backfill soil). The lower six inches of foundation soil (about 3,000 cubic yards), which may contain wastes, will be handled as potentially impacted or refuse-containing material, as appropriate based on visual inspection (see Finding 57).
- 57. Recyclable/reusable materials identified in wastes during excavation and stockpile operations will be removed, as feasible, and separately stockpiled. Any identifiable hazardous waste, including household hazardous waste (HHW), will also be

separated and stockpiled. Recyclable materials will be reused onsite or transported to appropriate recycling facility, while HHW will be diverted to the City's HHW program. Other hazardous waste will be removed from the site and transported to an authorized hazardous waste disposal facility (i.e., Class I landfill).

To the extent possible, excavated soil will be stockpiled for onsite reuse as backfill if the soil appears to be clean. Soil containing refuse may also be reused it is feasible to remove the refuse and the soil otherwise appears to be clean. Household wastes, refuse, debris, and soil containing such wastes that cannot be separated will be removed from the site and transported to an authorized Class I, II or III landfill as appropriate.

Further characterization, including chemical testing, will be conducted on other wastes, including those tentatively identified as potentially hazardous, designated, and potentially impacted. Once characterized, all such wastes will be transported to an appropriate offsite disposal facility (i.e., Class I, II or III landfill). Any potentially impacted soil not confirmed as impacted will be transported to a Class III landfill for possible use as alternative daily cover.

58. The volume of each waste and material stockpile in the stockpile operations area is expected to be limited to about 750 cubic yards. All waste and material stockpiles will be managed for dust control, and to prevent nuisance conditions, erosion and storm water impacts (see Finding 59). Plastic sheeting will be placed over any piles that have an odor or indicate elevated organic vapor readings. Water will be applied to any piles, as necessary, to control dust and prevent wind erosion.

Storm Water

59. It is expected that all clean closure activities, including excavation, confirmation sampling, and equipment mobilization and demobilization, well be completed in a single construction season. In the event that the work takes longer, however, these WDRs require that the Discharger will implement a site winterization plan, including any necessary BMPs under the Construction Activities General Storm Water Permit and Storm Water Pollution Prevention Plan (SWPPP). See Storm Water Specifications D.1 through D.5.

Groundwater

60. MRP No. R5-2008-0106 (attached) specifies the WQPS for the site required under Section 20390, including concentration limits (i.e., groundwater cleanup goals), and the Discharger's proposed corrective action monitoring program required under Section 20430(d) to demonstrate the effectiveness of corrective action in achieving compliance with the WQPS. The MRP also incorporates requirements in these WDRs for demonstrating compliance with the WQPS (see Monitoring Specification G.27).

COST ESTIMATES AND FINANCIAL ASSURANCES

- 61. The Discharger is not required to demonstrate financial assurances to the CIWMB for closure (Section 22205(b)) and postclosure maintenance (Section 22210(b)), since the landfill ceased operations prior to January 1, 1988. The Discharger is also not required to demonstrate financial assurances to the CIWMB for corrective action (Section 22220(b)), since the landfill ceased operations prior to July 1, 1991.
- 62. The total estimated cost of clean closure construction activities, including waste excavation, disposal, confirmation sampling and site reclamation is \$1,500,000 in 2008 dollars. Clean closure construction activities will be funded from the City's Solid Waste Fund. The Discharger has budgeted \$1,000,000 from the fund for clean closure activities for this year (2008). Section 22207(a) does not require financial assurances for clean closure of the landfill except as necessary to repair the final cover in the event that work is suspended or not completed (see Finding 63).
- 63. After removal of landfill wastes and reclamation of the site, postclosure maintenance costs will be limited to maintenance of monitoring facilities. In the event that clean closure construction activities are interrupted or suspended for a significant period of time (i.e., greater than six months) repair or reconstruction of remaining portions of the landfill (i.e., final cover, slopes and/or precipitation and drainage controls) may become necessary. Specification C.5 of these WDRs requires that the Discharger implement such repairs, as necessary, in accordance with Title 27 closure requirements. Provision I.8.a.i requires that the Discharger provide updated estimates of these closure/postclosure maintenance costs for Board staff approval, while Provision I.6 requires that the Discharger provide financial assurances per Sections 22207(a) and 22212(a) in the amount of the Board staff approved cost estimates.
- 64. The Discharger is required to provide financial assurances to the Regional Water Board to cover estimated costs of corrective action to address a known or reasonably foreseeable release (KRFR) per Section 22222. Exclusive of clean closure construction costs, such additional costs include the following:
 - a. Cost of postclosure corrective action monitoring from the beginning of clean closure construction through the required compliance period specified in Section C.5 of MRP No. R5-2008-0106 (including required proof period to demonstrate compliance with the Water Quality Protection Standard);
 - b. Cost of remediation measure(s) necessary to address KRFR to groundwater (i.e., existing release) and achieve compliance with the WQPS.

Provisions I.8.a.ii and I.8.a.iii require that the Discharger provide updated estimates of these corrective action costs for Regional Water Board staff approval, and Provision I.6 requires that the Discharger provide corrective action financial assurances in the amount of the Regional Water Board staff approved cost estimates.

REGULATORY CONSIDERATIONS

- 65. The City of Folsom approved a Negative Declaration for the landfill clean closure project on 26 February 2008 in accordance with the California Environmental Quality Act (CEQA, Public Resources Code Section 21000 et seq.) and CEQA guidelines (14 CCR Section 15000 et seq.). No significant water quality impacts were identified with the project after incorporation of mitigation measures.
- 66. Section 13267(b) of California Water Code provides that: "In conducting an investigation specified in subdivision (a), the regional board may require that any person who has discharged, discharges, or is suspected of having discharged or discharging, or who proposed to discharge within its region, or any citizen or domiciliary, or political agency or entity of this state who had discharged, discharges, or is suspected of having discharged or discharging, or who proposed to discharge waste outside of its region that could affect the quality of the waters of the state within its region shall furnish, under penalty of perjury, technical or monitoring program reports which the board requires. The burden, including costs of these reports, shall bear a reasonable relationship to the need for the reports and the benefits to be obtained from the reports." The monitoring and reporting program required by this Order (MRP No. R5-2008-0106, attached) is necessary to assure compliance with these waste discharge requirements. The Discharger operates the facility that discharges the waste subject to this Order.

67. This order implements:

- a. The Water Quality Control Plan for the Sacramento River and San Joaquin River Basins, Fourth Edition; and
- b. Chapters 1 through 7, Subdivision 1, Division 2, Title 27, of the California Code of Regulations, effective 18 July 1997, and subsequent revisions.
- 68. The technical reports required by this Order and attached MRP No. R5-2008-0106 are necessary to assure compliance with these waste discharge requirements. The Discharger owns and operates the facility that discharges the waste subject to this Order.

PROCEDURAL REQUIREMENTS

- 69. All local agencies with jurisdiction to regulate land use, solid waste disposal, air pollution, and to protect public health have approved the use of this site for the discharges of waste to land stated herein.
- 70. The Regional Water Board notified the Discharger and interested agencies and persons of its intent to prescribe waste discharge requirements for this discharge, and has provided them with an opportunity for a public hearing and an opportunity to submit their written views and recommendations.
- 71. The Regional Water Board, in a public meeting, heard and considered all comments pertaining to the discharge.

72. Any person affected by this action of the Regional Water Board may petition the State Water Resources Control Board to review the action in accordance with Sections 2050 through 2068, Title 23, California Code of Regulations. The petition must be received by the State Water Resources Control Board, Office of Chief Counsel, P.O. Box 100, Sacramento, California 95812, within 30 days of the date of issuance of this Order. Copies of the laws and regulations applicable to the filing of a petition are available on the Internet at www.waterboards.ca.gov/laws_regulations and will be provided on request.

IT IS HEREBY ORDERED, pursuant to Sections 13263 and 13267 of the California Water Code, that Order No. Order No. 95-246 is rescinded, and that the City of Folsom, its agents, successors, and assigns, in order to meet the provisions of Division 7 of the California Water Code and the regulations adopted thereunder, shall comply with the following:

A. DISCHARGE PROHIBITIONS

- 1. With the exception of waste stockpiling conducted as part of landfill clean closure operations, the discharge of new or additional waste at this facility is prohibited.
- 2. The discharge of waste constituents to the unsaturated zone or to groundwater is prohibited.
- 3. The discharge of solid or liquid waste or leachate to surface waters, surface water drainage courses, or groundwater is prohibited.
- 4. The landfill shall not cause pollution or a nuisance, as defined by the California Water Code, Section 13050, and shall not cause degradation of any water supply.
- 5. The discharge shall not cause any increase in the concentration of waste constituents in soil-pore gas, soil-pore liquid, soil, or other geologic materials outside of the Unit if such waste constituents could migrate to waters of the State in either the liquid or the gaseous phase and cause a condition of nuisance, degradation, contamination, or pollution.
- 6. The concentration of total nitrate and total sulfate in residual soil in the excavation area after removal of landfill wastes and completion of confirmation sampling (including any necessary step out sampling and soil remediation in the event of a failing sampling node) shall not exceed the soil cleanup goals for these constituents (450 mg/kg and 570 mg/kg) specified in Finding 50.

B. DISCHARGE SPECIFICATIONS

- 1. With the following exceptions, wastes shall remain within the designated disposal area at all times:
 - a. Wastes removed for disposal at an authorized offsite facility
 - b. Inert fill stockpiled for use as backfill
 - c. Inert wastes stockpiled for beneficial reuse
 - d. Stockpiles of recyclable materials
- 2. All excavated wastes shall be characterized for disposal and transported to an authorized disposal or recycling facility, as appropriate, within 30 days. No waste stockpile destined for offsite disposal shall remain onsite for longer than 30 days and each such stockpile shall be limited to a maximum volume of 1,000 cubic yards.
- 3. The Discharger shall, in a timely manner, remove and relocate any wastes discharged at this facility in violation of this Order.
- 4. Any liquid encountered in the landfill or UFA excavation areas, including perched groundwater, leachate, and/or storm water, shall be pumped out and appropriately disposed of after testing. All leachate and contact water shall be disposed of as wastewater (i.e., discharged to sanitary sewer or removed by authorized hauler).
- 5. Storm water runoff from the facility shall be monitored in accordance with MRP No. R5-2008-0106 and applicable storm water regulations.
- 6. Measures proposed to address a known or reasonably foreseeable release for financial assurances purposes shall be considered part of the corrective action program for the landfill and implemented as necessary.

C. CONSTRUCTION SPECIFICATIONS

- 1. All construction documents shall be certified by a California registered civil engineer or a certified engineering geologist in accordance with the August 1997 Standard Provisions and Reporting Requirements (Requirements 1, 3 and 4, Supervision and Certification, STANDARD CONDITIONS) and applicable Title 27 sections (e.g. Sections 20323, 20324, and 21090(h)).
- Clean closure construction activities shall be conducted in phases as proposed in the Clean Closure Plan (described in Findings 44 through 59), beginning in the UFA area. Each phase shall include the following major steps:
 - a. Waste excavation.
 - b. Waste stockpiling and characterization,
 - c. Waste recycling/offsite disposal
 - d. Confirmation sampling and additional excavation, if necessary

- e. Backfilling and grading
- f. Site reclamation

At a minimum, Steps a through d shall be completed for each phase before beginning the next phase. Steps e and f may be deferred until completion of multiple phases if excavated areas are needed for project construction activities (i.e., staging, stockpiling) and adequate BMPs have been implemented to address any associated erosion control, drainage, and/or storm water issues in such areas.

- 3. The discharger shall not disturb any more of the landfill final cover than is necessary for that phase of construction based on the excavation plan.
- 4. Waste excavation shall be conducted in accordance with the excavation plan and shall continue until excavation criteria and confirmation sampling results indicate that all landfill wastes have been removed in accordance with the soil cleanup goals per Discharge Specification A.6.
- 5. In the event that clean closure construction activities are interrupted or suspended for any significant period of time (i.e., six months or greater), the discharger shall repair or reconstruct, as necessary, any remaining portions of the landfill disturbed by excavation activity (e.g., final cover, slopes, precipitation and drainage controls) where wastes have not yet been removed. All repairs shall be to Title 27 performance standards (e.g., Section 20950(a)(2)(A) for final cover).
- 6. With the exception of postclosure groundwater monitoring, in no case shall landfill clean closure plan construction activities, as listed in Finding 44, extend beyond **15 October 2009**.

D. STORM WATER SPECIFICATIONS

- 1. The discharger shall obtain coverage for the clean closure project under the General Storm Water Permit for Construction Activities prior to initiating project construction.
- 2. The discharger shall implement appropriate storm water best management practices (BMPs) for the project in accordance with the Storm Water Pollution Prevention Plan (SWPPP) developed under the General Permit.
- 3. The discharger shall regularly check local weather forecasts so as to identify and allow sufficient time to prepare the site for periods of wet weather. In the event wet weather occurs at the site that was not forecast, the discharger shall implement storm water BMPs to the extent conditions allow.

- 4. During periods of wet weather, storm water BMPs shall be implemented within the excavation and stockpile areas to promote drainage, protect against erosion, and minimize infiltration, ponding and storm water contact with wastes.
 - a. Storm water shall be diverted around the excavation area to prevent it from contacting wastes and ponding within the excavation area. Any ponded water within the excavation area shall be pumped out and appropriately disposed of. Contact storm water shall be discharged to sanitary sewer.
 - b. Exposed excavation slopes shall be covered and graded prior to significant storm events.
 - c. Exposed stockpiles of excavated waste shall be covered as feasible in accordance with the SWPPP.
 - d. Construction activities shall be suspended if such activity could interfere with implementation of the BMPs, disturb landfill cover and/or precipitation and drainage controls in areas not under excavation, or otherwise threaten water quality.
- 5. Annually, prior to the anticipated rainy season, but no later than 31 October, any necessary erosion control measures shall be implemented and any necessary construction, maintenance, or repairs of precipitation and drainage control facilities shall be completed to prevent storm water flows from:
 - a. Contacting or percolating through wastes;
 - b. Causing erosion or inundation of the landfill cover, precipitation and drainage controls, or other areas of the site; or
 - c. Causing sedimentation and clogging of the storm drains.

Winterization measures shall include all areas affected by clean closure construction activities, including, but not necessarily limited to, the excavation, equipment staging, and waste stockpile areas.

E. POSTCLOSURE SPECIFICATIONS

The following specifications apply to any portions of the landfill that have not been clean closed:

- 1. The Discharger shall maintain the landfill cover, precipitation and drainage controls, monitoring wells and all other landfill facilities throughout the post-closure maintenance period.
- 2. The final cover shall be graded and maintained to prevent ponding, promote lateral runoff, and prevent soil erosion due to high run-off velocities.
- 3. Areas with slopes greater than ten percent, surface drainage courses, and areas subject to erosion by wind or water shall be maintained to prevent such erosion.

- 4. All landfill final cover slopes shall be capable of withstanding a maximum probable earthquake.
- 5. The erosion-resistant layer shall be maintained with native or other vegetation capable of providing effective erosion resistance. The vegetation shall not have a rooting depth greater than the erosion-resistant layer thickness.
- 6. The closed landfill shall be maintained to prevent, to the greatest extent possible, ponding, infiltration, inundation, erosion, slope failure, and washout.
- 7. The Discharger shall conduct an aerial site survey for the purpose of updating the topographic map for the site at least every five years.
- 8. Precipitation and drainage control systems shall be designed, constructed, operated and maintained to convey peak flows from a 100-year, 24-hour storm event.
- 9. The post-closure maintenance and monitoring period shall continue until such time as:
 - a. The landfill has been clean closed in accordance with Title Sections 20950(a)(2)(B) and 21090(f); or
 - b. The Regional Water Board otherwise finds that the landfill no longer threatens water quality and that groundwater quality at the site has returned to compliance with the Water Quality Protection Standard.

Regional Water Board concurrence of clean closure completion does not relieve the discharger from the requirements of other state agencies (including the agents of such agencies) such as the CIWMB and Local Enforcement Agency.

F. FACILITY SPECIFICATIONS

- The Discharger shall maintain in good working order any facility, control system, or monitoring device installed to achieve compliance with the waste discharge requirements. All storm water controls, including drainage facilities, shall be maintained so that they function effectively during precipitation events.
- 2. Methane and other landfill gases shall be adequately vented, removed from the Unit, or otherwise controlled to prevent the danger of adverse health effects, nuisance conditions, or the impairment of the beneficial uses of surface water or groundwater due to migration through the unsaturated zone.
- All wells within 500 feet of the facility shall have sanitary seals that meet the requirements of the Sacramento County Environmental Management Department or shall be properly abandoned. A record of the sealing and/or

abandonment of such wells shall be sent to the Board and to the State Department of Water Resources.

4. The Discharger shall immediately notify the Regional Water Board of any flooding, unpermitted discharge of waste off-site, equipment failure, slope failure, or other change in site conditions that could impair the integrity of waste or leachate containment facilities or precipitation and drainage control structures. This specification shall exclude those areas of the landfill that have been clean closed.

G. MONITORING SPECIFICATIONS

- 1. The Discharger shall conduct background and corrective action groundwater monitoring, as specified in MRP No. R5-2008-0106. Background monitoring shall be conducted for the purpose of establishing and updating concentration limits as part of the Water Quality Protection Standard per 27 CCR Section 20400(a). Corrective action monitoring shall be conducted for the purpose of assessing the nature and extent of the release, designing corrective action measures, and for assessing the progress of corrective action in returning to compliance with the WQPS (Section 20430(d)).
- 2. The Discharger shall provide Regional Water Board staff a minimum of one-week notification prior to commencing any field activities related to the installation, non-routine repair, or abandonment of monitoring devices. The Discharger shall also provide Regional Water Board staff with a sampling schedule at least 48 hours prior to initiation of each detection, evaluation, or corrective action monitoring event conducted pursuant to MRP No. R5-2008-0106.
- 3. The Discharger shall comply with the Water Quality Protection Standard as specified in MRP No. R5-2008-0106 and the August 1997 Standard Provisions and Reporting Requirements (SPRR).
- 4. The concentrations of the constituents of concern in waters passing the Point of Compliance shall not exceed concentration limits established in accordance with MRP No. R5-2008-0106.
- 5. The Discharger shall maintain and implement a Sample Collection and Analysis Plan that includes the following elements:
 - a. Sample collection procedures describing purging techniques, sampling equipment, and decontamination of sampling equipment;
 - b. Sample preservation information and shipment procedures;
 - c. Sample analytical methods and procedures; Sample quality assurance/quality control (QA/QC) procedures; and

- d. Chain of Custody control.
- 6. For any given monitored medium, the samples taken from all monitoring points and background monitoring points to satisfy the data analysis requirements for a given reporting period shall all be taken within a span not to exceed 30 days, unless the Executive Officer approves a longer time period, and shall be taken in a manner that ensures sample independence to the greatest extent feasible.
- 7. Specific methods of collection and analysis must be identified. Sample collection, storage, and analysis shall be performed according to the most recent version of USEPA Methods, such as the latest editions, as applicable, of: (1) Methods for the Analysis of Organics in Water and Wastewater (USEPA 600 Series), (2) Test Methods for Evaluating Solid Waste (SW-846, latest edition), and (3) Methods for Chemical Analysis of Water and Wastes (USEPA 600/4-79-020), and in accordance with the approved sampling plan.
- 8. If methods other than USEPA-approved methods or Standard Methods are used, the exact methodology shall be submitted for review and approval by the Executive Officer prior to use.
- 9. The methods of analysis and the detection limits used must be appropriate for the expected concentrations. For the monitoring of any constituent or parameter that is found in concentrations which produce more than 90% non-numerical determinations (i.e., "trace" or "ND") in data from background monitoring points for that medium, the analytical method having the lowest method detection limit (MDL) shall be selected from among those methods which would provide valid results in light of any matrix effects or interferences.
- 10. "Trace" results results falling between the MDL and the practical quantitation limit (PQL) shall be reported as such, and shall be accompanied both by the estimated MDL and PQL values for that analytical run.
- 11. MDLs and PQLs shall be derived by the laboratory for each analytical procedure, according to State of California laboratory accreditation procedures. These MDLs and PQLs shall reflect the detection and quantitation capabilities of the specific analytical procedure and equipment used by the lab, rather than simply being quoted from USEPA analytical method manuals. In relatively interference-free water, laboratory-derived MDLs and PQLs are expected to closely agree with published USEPA MDLs and PQLs.
- 12. If the laboratory suspects that, due to a change in matrix or other effects, the true detection limit or quantitation limit for a particular analytical run differs significantly from the laboratory-derived MDL/PQL values, the results shall be flagged accordingly, along with estimates of the detection limit and quantitation limit actually achieved. The MDL shall always be calculated such that it